Automorfismus R3
Úloha číslo: 4518
Rozhodněte, zda zobrazení \(f: \mathbb{R}^3 \to \mathbb{R}^3\) dané předpisem
 \(f (x, y, z) = (x + y - 2z, y - z, x - y)^\mathsf{T}\)
 je isomorfismem \(\mathbb{R}^3\) na sebe sama (takzvaným automorfismem).
- Řešení- Matice zobrazení vůči standardní bázi \(E\) prostoru \(\mathbb R^3\) (na obou stranách) je: \[f_{E,E}= \begin{pmatrix} 1 & 1 & -2\\ 0 & 1 & -1\\ 1 & -1 & 0 \end{pmatrix} \] - Elementárními úpravami: \[\begin{pmatrix} 1 & 1 & -2\\ 0 & 1 & -1\\ 1 & -1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2\\ 0 & 1 & -1\\ 0 & -2 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & -2\\ 0 & 1 & -1\\ 0 & 0 & 0 \end{pmatrix} \] zjistíme, že její hodnost je 2 a je proto singulární. 
- OdpověďZobrazení \(f\) není automorfismus.



