Rozklad součtu tří vektorů
Úloha číslo: 4373
Určete parametry \(a,b \in \mathbb K\), aby pro každou kvadratickou formu \(g\) na \(V\) nad \(\mathbb K\) a libovolné tři vektory \(\mathbf u,\mathbf v,\mathbf w \in V\) platilo: \(g(\mathbf u+\mathbf v+\mathbf w)=ag(\mathbf u+\mathbf v)+ag(\mathbf u+\mathbf w)+ag(\mathbf v+\mathbf w)+bg(\mathbf u)+bg(\mathbf v)+bg(\mathbf w)\)
Řešení
Obě strany si rozepíšeme pomocí bilineární formy \(f\) a porovnáme koeficienty. \[ \begin{eqnarray*} && g(\mathbf u+\mathbf v+\mathbf w) \\ &=& f(\mathbf u+\mathbf v+\mathbf w,\mathbf u+\mathbf v+\mathbf w)\\ &=& f(\mathbf u,\mathbf u)+ f(\mathbf u,\mathbf v)+ f(\mathbf u,\mathbf w)+ f(\mathbf v,\mathbf u)+ f(\mathbf v,\mathbf v)+ f(\mathbf v,\mathbf v)+ f(\mathbf w,\mathbf u)+ f(\mathbf w,\mathbf v)+ f(\mathbf w,\mathbf w)\\ \end{eqnarray*} \] \[ \begin{eqnarray*} && a(g(\mathbf u+\mathbf v)+g(\mathbf u+\mathbf w)+g(\mathbf v+\mathbf w))+b(g(\mathbf u)+g(\mathbf v)+g(\mathbf w))\\ &=& a(f(\mathbf u+\mathbf v,\mathbf u+\mathbf v)+f(\mathbf u+\mathbf w,\mathbf u+\mathbf w)+f(\mathbf v+\mathbf w,\mathbf v+\mathbf w))+b(f(\mathbf u,\mathbf u)+f(\mathbf v,\mathbf v)+f(\mathbf w,\mathbf w)) \\ &=& (2a+b)(f(\mathbf u,\mathbf u)+ f(\mathbf v,\mathbf v)+ f(\mathbf w,\mathbf w))\\ &&+a( f(\mathbf u,\mathbf v)+ f(\mathbf u,\mathbf w)+ f(\mathbf v,\mathbf u)+ f(\mathbf v,\mathbf v)+ f(\mathbf v,\mathbf v)+ f(\mathbf w,\mathbf u)+ f(\mathbf w,\mathbf v)) \\ \end{eqnarray*} \] Čili \(2a+b=1\) a \(a=1\).Výsledek
Hledané koeficienty jsou \(a=1\) a \(b=-1\).