Opakování komplexní aritmetiky

Úloha číslo: 2467

Spočítejte výrazy
a) \((3+2i)+(1-3i)\),
b) \((3+2i)-(1-3i)\),
c) \((3+2i)(1-3i)\),
d) \((3+2i)/(1-3i)\),
e) \((1+i)^{20}\).

  • Řešení

    a) \((3+2i)+(1-3i)=4-i\),
    b) \((3+2i)-(1-3i)=2+5i\),
    c) \((3+2i)(1-3i)=3+2i-9i+6=9-7i\),
    d) \(\frac{3+2i}{1-3i}= \frac{(3+2i)(1+3i)}{(1-3i)(1+3i)}= \frac{-3+11i}{10}\),
    e) \((1+i)^{20}=[\sqrt{2}(\cos\frac\pi4+i\sin\pi4)]^{20}= (\sqrt{2})^{20}(\cos 5\pi +i\sin 5\pi)= -1024\).

Obtížnost: Snadná úloha (řešená úvahou nebo přímo z definic)
Úloha na trénování výpočtu
En translation
	Zaslat komentář k úloze