Pravidla pro počítání s maticemi.
Úloha číslo: 2395
Dokažte, anebo vyvraťte, zdali pro matice \(\mathbf A,\mathbf B,\mathbf C\) a \(\mathbf 0\) stejného řádu a reálná čísla \(\alpha,\beta\) platí:
a) \(\mathbf A+(\mathbf B+\mathbf C)=(\mathbf A+\mathbf B)+\mathbf C\) | h) \(\alpha(\mathbf A+\mathbf B)=\alpha\mathbf A+\alpha\mathbf B\) |
b) \(\mathbf A+\mathbf B=\mathbf B+\mathbf A\) | i) \((\alpha+\beta)\mathbf A=\alpha\mathbf A+\beta\mathbf A\) |
c) \(\mathbf A+\mathbf 0=\mathbf A\) | j) \(\alpha\mathbf A+\beta\mathbf B=(\alpha+\beta)(\mathbf A+\mathbf B)\) |
d) \(\alpha(\beta\mathbf A)=(\alpha\beta)\mathbf A\) | k) \((\mathbf A^T)^T=\mathbf A\) |
e) \(\alpha(\beta\mathbf A)=\beta(\alpha\mathbf A)\) | l) \((\mathbf A+\mathbf B)^T=\mathbf A^T+\mathbf B^T\) |
f) \(\mathbf A+(-1)\mathbf A=\mathbf 0\) | m) \((\alpha\mathbf A)^T=\alpha(\mathbf A^T)\) |
g) \(1\mathbf A=\mathbf A\) |
Řešení
Řešíme porovnáním matic na levé a pravé straně rovnosti po složkách:
a) \((\mathbf A+(\mathbf B+\mathbf C))_{ij}=a_{ij}+(\mathbf B+\mathbf C)_{ij}=a_{ij}+(b_{ij}+c_{ij})=(a_{ij}+b_{ij})+c_{ij}=(\mathbf A+\mathbf B)_{ij}+c_{ij}=((\mathbf A+\mathbf B)+\mathbf C)_{ij}\)
První, druhá, čtvrtá a pátá rovnost jsou jen rozepsáním definice součtu matic. Třetí rovnost vyjadřuje asociativitu součtu reálných čísel.
b-l) rozepíšeme obdobně, pouze j) neplatí, správně má být:
\(\alpha\mathbf A+\alpha\mathbf B+\beta\mathbf A+\beta\mathbf B=(\alpha+\beta)(\mathbf A+\mathbf B)\).Protipříklad jsou libovolná \(\alpha,\beta,\mathbf A\) a \(\mathbf B\), kde \(\alpha\mathbf B+\beta\mathbf A\ne \mathbf 0\)