We introduce a characteristic function \(\chi_{A,B,C,D}\), where \( \chi_{A,B,C,D}(x)= \begin{cases} 0 & x\in \{1,…,n\}\setminus D \\ 1 & x\in D \setminus (B \cup C) \\ 2 & x\in B \setminus C \\ 3 & x\in C \setminus B \\ 4 & x\in (B\cup C) \setminus A \\ 5 & x\in A \end{cases} \)
Each choice \((A,B,C,D)\) give a unique characteristic function, and conversely.
The number of quadruples \((A,B,C,D)\) equals the number of functions from \(\{1,…,n\}\) to \(\{0,…,5\}\).