Fibonacci sequence
Task number: 3316
Prove that for the Fibonacci sequence \(F_1=F_2=1\), \(F_n=F_{n-1}+F_{n-2}\) the following statements hold:
Variant
\(\displaystyle F_n\le \left(\frac{1+\sqrt{5}}{2}\right)^{n-1}\).
Variant
\(\displaystyle \sum_{i=1}^{n}F_i =F_{n+2}-1\).
Variant
\(\displaystyle\sum_{i=1}^{n}F_i^2 =F_nF_{n+1}\).
Variant
\(\displaystyle\sum_{i=1}^{n}F_{2i-1} =F_{2n}\).