Sums
Task number: 3312
Prove using mathematical induction:
Variant
\(\sum\limits_{i=1}^n i = \frac{1}{2}(n^2+n).\)
Variant
\(\sum\limits_{i=1}^n 2i-1 = n^2\).
Variant
\(\sum\limits_{i=1}^n 4i+5 = 2 n^2+ 7n\).
Variant
\(\sum\limits_{i=1}^n i^2 = \frac{1}{3}n^3+\frac{1}{2}n^2+\frac{1}{6}n\).
Variant
\(\prod\limits_{i=2}^n \frac{i-1}{i} = \frac{1}{n}\).