Three concrete equivalences
Task number: 3394
Determine whether the following relations are equivalences and if they are, determine their equivalence classes.
Variant
\(X_1={\mathbb N}, xR_1y \Leftrightarrow p |(x-y)\) (residue classes modulo \(p\in {\mathbb N}, p\ge 2\))
Variant
\(X_2={\mathbb Z}\setminus 0, xR_2y \Leftrightarrow x|y \wedge y|x\)
Variant
\(X_3={\mathbb N}, xR_3y \Leftrightarrow \exists z\in {\mathbb N}: z|y \wedge z|x\).
What happens if we require \(z>1\)?