Series with binomial coefficients
Task number: 3419
Add:
- Variant- \( \sum\limits_{k=0}^n k\binom{n}{k} \) 
- Hint- Try to interpret the additional multiplicative factor \(k\) such that in a chosen \(k\)-tuple we distinguish one of its elements. 
- Solution- The expression represents the number of choices of \(k\)-element subsets from \(n\) elements, where we then choose a single element from the chosen subset. - We may attain the same result by first choosing a particular element and then extending it with a \((k-1)\)-element subset. - So we get: \( \sum\limits_{k=0}^n k\binom{n}{k} =n \sum_{k=0}^{n-1} \binom{n-1}{k-1} =n2^{n-1} \) - An alternative, formal calculation: 
 \( \sum\limits_{k=0}^n k\binom{n}{k} =\sum\limits_{k=1}^n k\binom{n}{k} = \sum\limits_{k=1}^n k\frac{n!}{k!(n-k)!} = n \sum\limits_{k=1}^n \frac{(n-1)!}{(k-1)!(n-k)!} = n \sum\limits_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} = n 2^{n-1} \)- Another way to derive this is by differentiation . From the binomial formula: \( \sum\limits_{k=0}^n \binom{n}{k} x^k = (1+x)^n \) by differentiating by \(x\) we obtain: \( \sum\limits_{k=0}^n \binom{n}{k}k x^{k-1} = n(1+x)^{n-1} \). - Now we need only substitute \(x=1\). 
- Answer- The sum of the series is \(n 2^{n-1}\). 
- Variant- \( \sum\limits_{k=0}^n k^2\binom{n}{k} \) 
- Solution- The expression corresponds to the number of choices of \(k\)-element subsets from \(n\) elements, where we then separately select two distinguished elements from the chosen subset (we may choose the same element twice). - We may obtain the same result by first choosing the distinguished elements and then extending them to a \(k\)-element subset. We must distinguish the case where we select the same element twice. - So we obtain: \( \sum\limits_{k=0}^n k^2\binom{n}{k} =n \sum\limits_{k=0}^{n-1} \binom{n-1}{k-1}+ n(n-1)\sum\limits_{k=0}^{n-2} \binom{n-2}{k-2} =n2^{n-1}+n(n-1)2^{n-2}=n(n+1)2^{n-2} \) 
- Answer- The sum of the series is \(n(n+1)2^{n-2}\). 
- Variant- \( \sum\limits_{k=0}^{2n} (-1)^k\binom{4n}{2k} \) 
- Hint- Try substituting the imaginary unit \(i\) into the binomial identity. 
- Solution- \( \sum\limits_{k=0}^{2n} (-1)^k\binom{4n}{2k}= \sum\limits_{k=0}^{2n} i^{2k}\binom{4n}{2k}= Re\left(\sum\limits_{k=0}^{4n} i^k\binom{4n}{k}\right)= Re\left((1+i)^{4n}\right)= (-4)^n \) 
- Answer- The sum of the series is \((-4)^n\). 
- Variant- \( \sum\limits_{k=0}^{2n-1} (-1)^k\binom{4n}{2k+1} \) 
- Hint- Use the substitution \(-1=i^2\). - Then extend the series with complex terms such that the real part remains unchanged. - Then further transform the series so that you can apply the binomial theorem to it. 
- Solution- \( \sum\limits_{k=0}^{2n-1} (-1)^k\binom{4n}{2k+1}= \sum\limits_{k=0}^{2n-1} i^{2k}\binom{4n}{2k+1}= Re\left(\sum\limits_{l=0}^{4n-2} i^{l}\binom{4n}{l+1}\right)= \) - … we add the term \(i^{4n-1}\binom{4n}{4n}\) whose real component is zero … - \( =Re\left(\sum\limits_{l=0}^{4n-1} i^{l}\binom{4n}{l+1}\right)= Im\left(i\sum\limits_{l=0}^{4n-1} i^{l}\binom{4n}{l+1}\right)= Im\left(\sum\limits_{l=0}^{4n-1} i^{l+1}\binom{4n}{l+1}\right)= Im\left(\sum\limits_{j=1}^{4n} i^{j}\binom{4n}{j}\right)= \) - … we add the term \(i^{0}\binom{4n}{0}\) whose complex component is zero … - \( =Im\left(\sum\limits_{j=0}^{4n} i^{j}\binom{4n}{j}\right)= Im\left((1+i)^{4n}\right)= Im\left((-4)^n\right)=0 \) 
- Answer- The sum of the series is 0. 



