Sums of binomial coefficients
Task number: 3418
Prove algebraically and also using combinatorial reasoning:
Variant
\(\binom{n-1}{k-1}+\binom{n-1}{k}=\binom{n}{k}\)
Variant
\( \sum\limits_{k=0}^n {n \choose k} = 2^n\)
Variant
\( \sum\limits_{k=0}^n (-1)^k \binom{n}{k} = 0\)
Variant
\( \binom{n}{m}\binom{m}{r}=\binom{n}{r}\binom{n-r}{m-r}\)
Variant
\( \sum\limits_{k=0}^r \binom{n}{k}\binom{m}{r-k} = \binom{m+n}{r}\)
Variant
\( \sum\limits_{k=r}^n \binom{k}{r} = \binom{n+1}{r+1} \)