Limits

Task number: 3193

Find the following limits, or justify why they don't exist.

  • Variant 1

    \( \lim\limits_{(x,y) \to (0{,}2)} \frac{\sin xy}{x}. \)

  • Variant 2

    \( \lim\limits_{(x,y) \to (0{,}0)} \frac{\sin (x^2 + y^2)}{x^2 +y^2}. \)

  • Variant 3

    \( \lim\limits_{(x,y) \to (0{,}0)} \frac{x^2 - y^2}{x^2 +y^2}. \)

  • Variant 4

    \( \lim\limits_{(x,y) \to (0{,}0)} \frac{\ln (1+xy)}{|x| + |y|}. \)

Difficulty level: Easy task (using definitions and simple reasoning)
Solution require uncommon idea
Cs translation
Send comment on task by email