Limits of sequences
Task number: 2870
Determine the following limits, or prove that they do not exist.
Variant 1
\(\displaystyle \lim_{n\to\infty} \frac{2n^2+4n+n \sin n}{ n \cos 3n + (2n +\sin n)^2}\)
Variant 2
\(\displaystyle \lim_{n\to\infty} \frac{\lfloor \sqrt{n} \rfloor}{\sqrt{n}}\)
Variant 3
\(\displaystyle \lim_{n\to\infty} \cos (n^2 \pi) +\cos ((n+1) \pi) \)
Variant 4
\(\displaystyle \lim_{n\to\infty} n^{\cos (n \pi)} \)
Variant 5
\(\displaystyle \lim_{n\to\infty} \frac{\sqrt[4]{n^5+2}-\sqrt[3]{n^2+1}}{\sqrt[5]{n^4+2}-\sqrt{n^3+1}}\)
Variant 6
\(\displaystyle \lim_{n\to\infty} \frac{3^n+n^5}{n^6+n!}\)
Variant 7
\(\displaystyle \lim_{n\to\infty} \frac{\sqrt[3]{n^2}\sin(n!)}{n+1}\)