moderately complicated derivatives
Task number: 3016
Determine the derivatives of the following functions at points where the derivative exists:
Variant 1
\[ \frac{2^x - 1}{3x}. \]
Variant 2
\[\hbox{arctan} (\ln x).\]
Variant 3
\[\arcsin(\sin x)) \]
Variant 4
The function \(f\) is defined by the rules:
- \(f(x) = x^2 \sin \left(\frac{1}{x}\right)\) for \(x \in (-\infty, 0) \cup (0, \infty)\),
- \(f(0) = 0\).