Series with parameters
Task number: 2935
Determine for which values of \(a>0\) the following series converge.
Variant 1
\(\displaystyle \sum_{n=1}^{\infty} \frac{1}{1+a^n}\)
Variant 2
\(\displaystyle \sum_{n=1}^{\infty} \frac{a^n}{1+a^n}\)
Variant 3
\(\displaystyle \sum_{n=1}^{\infty} \frac{a^n}{n!}\)
Variant 4
\(\displaystyle \sum_{n=1}^{\infty}\frac{1+na}{\sqrt{n^2+n^6a}} \)
Variant 5
\(\displaystyle \sum_{n=1}^{\infty}n^4a^n \)