Using the definition
Task number: 2929
Using the definition of the sum of a series, solve the following exercises.
Variant 1
Show that the harmonic series \(\displaystyle \sum_{n=1}^{\infty}\frac1n \) diverges.
Variant 2
Show that the series \(\displaystyle \sum_{n=1}^{\infty} \frac1{\sqrt n}\) diverges.
Variant 3
Investigate the convergence or divergence of the series \(\displaystyle \sum_{n=1}^{\infty} \ln\left(1+\frac1n\right)\).
Variant 4
Let \(\displaystyle \lim_{n\to \infty} a_n = a \in \mathbb R\). Determine \(\displaystyle \sum_{n=1}^{\infty} (a_{n+1}-a_n) \).