Simple series
Task number: 2899
Compute the following limits.
Variant 1
\(\displaystyle \lim_{n\to\infty} \frac{1+2+…+n}{n^2}\)
Variant 2
\(\displaystyle \lim_{n\to\infty} \frac{1^2+2^2+…+n^2}{n^3}\)
Variant 3
\(\displaystyle \lim_{n\to\infty}\left(\frac1{2}+\frac1{3}+\frac1{2^2}+\frac1{3^2}+\frac1{2^3}+\frac1{3^3}+…+\frac1{2^n}+\frac1{3^n}\right) \)