Ratio test
Task number: 2932
Investigate the convergence of the series
Variant 1
\(\displaystyle \sum_{n=1}^{\infty}\frac1{n!} \).
Variant 2
\(\displaystyle \sum\limits_{n=1}^{\infty} \frac{2^n}{n!}. \)
Variant 3
\(\displaystyle \sum\limits_{n=1}^{\infty} \frac{n!}{2^{n^2}}. \)
Variant 4
\(\displaystyle \sum\limits_{n=1}^{\infty} \binom{2n}n \frac{1}{5^n}. \)
Variant 5
\(\displaystyle \sum_{n=1}^{\infty}\frac{2^nn!}{n^n} \).
Variant 6
\(\displaystyle \sum_{n=1}^{\infty}\frac{3^nn!}{n^n} \).
Variant 7
\(\displaystyle \sum_{n=1}^{\infty}\frac{(2n)!}{(n!)^2} \).
Variant 8
\(\displaystyle \sum_{n=1}^{\infty}\frac{n^n}{(2n)!}\).