Ratio test

Task number: 2932

Investigate the convergence of the series

  • Variant 1

    \(\displaystyle \sum_{n=1}^{\infty}\frac1{n!} \).

  • Variant 2

    \(\displaystyle \sum\limits_{n=1}^{\infty} \frac{2^n}{n!}. \)

  • Variant 3

    \(\displaystyle \sum\limits_{n=1}^{\infty} \frac{n!}{2^{n^2}}. \)

  • Variant 4

    \(\displaystyle \sum\limits_{n=1}^{\infty} \binom{2n}n \frac{1}{5^n}. \)

  • Variant 5

    \(\displaystyle \sum_{n=1}^{\infty}\frac{2^nn!}{n^n} \).

  • Variant 6

    \(\displaystyle \sum_{n=1}^{\infty}\frac{3^nn!}{n^n} \).

  • Variant 7

    \(\displaystyle \sum_{n=1}^{\infty}\frac{(2n)!}{(n!)^2} \).

  • Variant 8

    \(\displaystyle \sum_{n=1}^{\infty}\frac{n^n}{(2n)!}\).

Difficulty level: Easy task (using definitions and simple reasoning)
Routine calculation training
Cs translation
Send comment on task by email