Fibonacci sequence

Task number: 2796

Prove the following statements about the Fibonacci sequence \(F_1=F_2=1\), \(F_n=F_{n-1}+F_{n-2}\):

  • Variant 1

    \(\displaystyle F_n\le \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} \).

  • Variant 2

    \( \displaystyle \sum_{i=1}^{n}F_i =F_{n+2}-1 \).

  • Variant 3

    \( \displaystyle \sum_{i=1}^{n}F_i^2 =F_nF_{n+1} \).

  • Variant 4

    \( \displaystyle \sum_{i=1}^{n}F_{2i-1} =F_{2n} \).

Difficulty level: Easy task (using definitions and simple reasoning)
Routine calculation training
Cs translation
Send comment on task by email