Fibonacci sequence
Task number: 2796
Prove the following statements about the Fibonacci sequence \(F_1=F_2=1\), \(F_n=F_{n-1}+F_{n-2}\):
Variant 1
\(\displaystyle F_n\le \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} \).
Variant 2
\( \displaystyle \sum_{i=1}^{n}F_i =F_{n+2}-1 \).
Variant 3
\( \displaystyle \sum_{i=1}^{n}F_i^2 =F_nF_{n+1} \).
Variant 4
\( \displaystyle \sum_{i=1}^{n}F_{2i-1} =F_{2n} \).