Series with parameters - absolute convergence
Task number: 2939
Depending on the parameter \(a\), investigate the absolute or conditional convergence of the following series:
Variant 1
\(\displaystyle \sum\limits_{n=1}^{\infty} \frac{a^n}{n} \)
Variant 2
\(\displaystyle \sum\limits_{n=1}^{\infty} \frac{a^n}{n\cdot3^n} \)
Variant 3
\(\displaystyle \sum\limits_{n=1}^{\infty} \frac{n^2}{n^4+1}(a+1)^n \)
Variant 4
\(\displaystyle \sum\limits_{n=1}^{\infty} \frac{(a+2)^n}{\sqrt{n+1}} \)
Variant 5
\(\displaystyle \sum\limits_{n=1}^{\infty} \frac{a^n\cdot n!}{n^n} \)
Variant 6
\(\displaystyle \sum\limits_{n=1}^{\infty} n^{\ln a} \)