Limits of products
Task number: 2902
Compute the following limits
Variant 1
\(\displaystyle \lim_{n\to\infty}\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)…\left(1-\frac{1}{n^2}\right). \)
Variant 2
\(\displaystyle \lim_{n\to\infty}\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdots\frac{2n-1}{2n}. \)
Variant 3
\(\displaystyle \lim_{n\to\infty}\sqrt{2}\cdot\sqrt[4]{2}\cdot\sqrt[8]{2}\cdots\sqrt[2^n]{2} \)
Variant 4
\(\displaystyle \lim_{n\to\infty}\left(\frac{2^3-1}{2^3+1}\cdot\frac{3^3-1}{3^3+1}\cdots\frac{n^3-1}{n^3+1}\right) \).