Limits requiring a bit of thought

Task number: 2986

Decide whether the following limits exist. If they do, determine their values.

  • Variant 1

    \(\displaystyle \lim_{x\to 0} \frac{1}{x^2}. \)

  • Variant 2

    \(\displaystyle \lim_{x\to 0} \frac{1}{x^3}. \)

  • Variant 3

    \(\displaystyle \lim_{x \to \infty} \hbox{tan} \left( \frac{\pi}2 + \frac{1}{x^2 + 4}\right). \)

  • Variant 4

    \(\displaystyle \lim_{x \to 0} \sin \left(\frac 1x\right). \)

  • Variant 5

    \(\displaystyle \lim_{x \to 0} x \sin \left(\frac 1x\right). \)

  • Variant 6

    \(\displaystyle \lim_{x \to 0} \frac{\sin\left(x \sin \left(\frac 1x\right)\right)}{x \sin \left(\frac 1x\right)}. \)

Difficulty level: Moderate task
Solution require uncommon idea
Cs translation
Send comment on task by email