Limits requiring a bit of thought
Task number: 2986
Decide whether the following limits exist. If they do, determine their values.
Variant 1
\(\displaystyle \lim_{x\to 0} \frac{1}{x^2}. \)
Variant 2
\(\displaystyle \lim_{x\to 0} \frac{1}{x^3}. \)
Variant 3
\(\displaystyle \lim_{x \to \infty} \hbox{tan} \left( \frac{\pi}2 + \frac{1}{x^2 + 4}\right). \)
Variant 4
\(\displaystyle \lim_{x \to 0} \sin \left(\frac 1x\right). \)
Variant 5
\(\displaystyle \lim_{x \to 0} x \sin \left(\frac 1x\right). \)
Variant 6
\(\displaystyle \lim_{x \to 0} \frac{\sin\left(x \sin \left(\frac 1x\right)\right)}{x \sin \left(\frac 1x\right)}. \)