Leibniz´s test

Task number: 2938

Determine whether the following series are absolutely convergent, conditionally convergent, or divergent.

  • Variant 1

    \(\displaystyle \sum\limits_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2n + 3}} \)

  • Variant 2

    \(\displaystyle \sum\limits_{n=1}^{\infty}(-1)^n\frac{n}{n^3+1} \)

  • Variant 3

    \(\displaystyle \sum\limits_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[n]{n}} \)

  • Variant 4

    \(\displaystyle \sum\limits_{n=1}^{\infty} \frac{\cos (n \pi)}{n-\ln n} \)

  • Variant 5

    \(\displaystyle \sum\limits_{n=1}^{\infty} {\cos (n^2 \pi)}\left(\sqrt{n+11}-\sqrt{n+2} \right) \)

  • Variant 6

    \(\displaystyle \sum\limits_{n=1}^{\infty} {(-1)^n}\left(\sqrt[n]{3}-1\right) \)

  • Variant 7

    \(\displaystyle \sum\limits_{n=1}^{\infty} \frac{(-1)^{\frac{n(n+1)}2}}{n}. \)

Difficulty level: Moderate task
Routine calculation training
Cs translation
Send comment on task by email