Negation and the truth of propositions
Task number: 2783
First form the negation of each of the following propositions. Then decide whether the original proposition or its negation is true.
Variant 1
\(\forall x,y\in \mathbb R: x^2+y^2>0\)
Variant 2
\(\forall x\in \mathbb R\ \exists n\in \mathbb N: x< n\)
Variant 3
\(\forall x\in \mathbb R\ \exists n\in \mathbb N: (x\ge n) \land (x<n+1)\)
Variant 4
\(\forall \varepsilon> 0\ \exists \delta>0\ \forall x\in \mathbb R: |x-2|<\delta \ \Rightarrow\ |x-3| < \varepsilon \)
Variant 5
\(\forall \varepsilon> 0\ \exists \delta\ge 0\ \forall x\in \mathbb R: |x-2|<\delta \ \Rightarrow\ |x-3| < \varepsilon \)
(this differs from the previous variant in the range of \(\delta\))Variant 6
\(\forall x\in \mathbb N\ \exists y\in \mathbb N\ \forall z\in \mathbb N: z>x \Rightarrow y<z\)
Variant 7
\(\exists y\in \mathbb N\ \forall x\in \mathbb N\ \forall z\in \mathbb N: z>x \Rightarrow y<z\)
Variant 8
\(\exists y\in \mathbb N\ \forall x\in \mathbb N\ \forall z\in \mathbb R: z>x \Rightarrow y<z\)
Variant 9
\(\exists y\in \mathbb N\ \forall x\in \mathbb R\ \forall z\in \mathbb N: z>x \Rightarrow y<z\)