Statements about limits

Task number: 2864

Decide whether the following statements are valid. If so, prove them. If not, first disprove them and then try to modify them to be true (if possible).

  • Variant 1

    \(\displaystyle \lim_{n\to \infty} a_n= a \Longleftrightarrow \lim_{n\to \infty} a_{n+1}=a \)

  • Variant 2

    \(\displaystyle \lim_{n\to \infty} a_n= a \Longleftrightarrow \lim_{n\to \infty} a_{2n}=a \)

  • Variant 3

    \(\displaystyle (\exists n_0\in \mathbb N\ \forall n\ge n_0: a_n \le b_n) \Longrightarrow \lim_{n\to \infty} a_n \le \lim_{n\to \infty} b_n \)

  • Variant 4

    \(\displaystyle (\exists n_0\in \mathbb N\ \forall n\ge n_0: a_n < b_n) \Longrightarrow \lim_{n\to \infty} a_n < \lim_{n\to \infty} b_n \)

  • Variant 5

    \(\displaystyle \lim_{n\to \infty} a_n < \lim_{n\to \infty} b_n \Longrightarrow (\exists n_0\in \mathbb N\ \forall n\ge n_0: a_n < b_n) \)

  • Variant 6

    \(\displaystyle \lim_{n\to \infty} a_n =a \Longleftrightarrow \lim_{n\to \infty} b_n =a \)

    for the sequence \(b_n\) defined by \(b_{2n-1}=a_n\), \(b_{2n}=0\).

Difficulty level: Easy task (using definitions and simple reasoning)
Proving or derivation task
Cs translation
Send comment on task by email