Comparison test - difference of roots

Task number: 2931

Investigate the convergence of the series

  • Variant 1

    \(\displaystyle \sum_{n=1}^{\infty}\left(\sqrt{n^2+1}-\sqrt{n^2-1}\right) \).

  • Variant 2

    \(\displaystyle \sum_{n=1}^{\infty}\left(\sqrt{n^3+1}-\sqrt{n^3-1}\right) \).

  • Variant 3

    \(\displaystyle \sum_{n=1}^{\infty}\frac1n\left(\sqrt{n^2+1}-\sqrt{n^2-1}\right) \).

  • Variant 4

    \(\displaystyle \sum\limits_{n=2}^{\infty} \left( \sqrt{n^3 + 1} - \sqrt{n^3 - 3} \right). \)

Difficulty level: Easy task (using definitions and simple reasoning)
Routine calculation training
Cs translation
Send comment on task by email