Comparison test - difference of roots
Task number: 2931
Investigate the convergence of the series
Variant 1
\(\displaystyle \sum_{n=1}^{\infty}\left(\sqrt{n^2+1}-\sqrt{n^2-1}\right) \).
Variant 2
\(\displaystyle \sum_{n=1}^{\infty}\left(\sqrt{n^3+1}-\sqrt{n^3-1}\right) \).
Variant 3
\(\displaystyle \sum_{n=1}^{\infty}\frac1n\left(\sqrt{n^2+1}-\sqrt{n^2-1}\right) \).
Variant 4
\(\displaystyle \sum\limits_{n=2}^{\infty} \left( \sqrt{n^3 + 1} - \sqrt{n^3 - 3} \right). \)