Table - rational functions

Task number: 3110

Fill in the following table (determine the intervals on which the solution is valid). Express the last function using integration by parts with a recurrence relation in terms of \(\int \frac{1}{(x^2 + 1)^k} \, dx\).

\(f(x)\) \(F(x)\)
\(\frac{1}{x - \alpha}\)
\(\frac{1}{(x - \alpha)^k}\); \(k > 1\)
\(\frac{2x + p}{x^2 + px + q}\)
\(\frac{1}{x^2 + px + q}\); \(q > \frac{p^2}4\)
\(\frac{2x + p}{(x^2 + px + q)^k}\); \(k>1\)
\(\frac{1}{(x^2 + 1)^{k+1}}\); \(k \geq 1\)
  • Result

    To simplify the notation, the solutions are written without the constant.

    \(f(x)\) \(F(x)\)
    \(\frac{1}{x - \alpha}\) \(\ln|x - \alpha|\)
    \(\frac{1}{(x - \alpha)^k}\); \(k > 1\) \(\frac{-1}{(k-1)(x - \alpha)^{k-1}}\)
    \(\frac{2x + p}{x^2 + px + q}\) \(\ln|x^2 + px + q|\)
    \(\frac{1}{x^2 + px + q}\); \(q > \frac{p^2}4\) \(\frac{1}{\sqrt t} \operatorname{arctan} ((x + p/2)/\sqrt t)\), where \(t = q - p^2/4\)
    \(\frac{2x + p}{(x^2 + px + q)^k}\); \(k>1\) \(\frac{-1}{(k-1)(x^2 + px + q)^{k-1}}\)
    \(\frac{1}{(x^2 + 1)^{k+1}}\); \(k \geq 1\) \(\frac{1}{2k} \left(\frac{x}{(1+x^2)^k} + (2k-1) \int \frac{1}{(x^2 + 1)^k} \, dx \right)\)
Difficulty level: Easy task (using definitions and simple reasoning)
Routine calculation training
Cs translation
Send comment on task by email