Powers of a mapping

Task number: 2812

Let \(f(x)=(1-x)^{-1}\). Determine \(f\circ f\) a \(f\circ f\circ f\).

  • Resolution

    \( \displaystyle (f\circ f)(x)=f(f(x))=\frac{1}{1-f(x)}=\frac{1}{1-\frac{1}{1-x}}=\frac{x-1}{x}=1-\frac1x \)

    \( \displaystyle (f\circ f\circ f)(x)=f((f\circ f)(x))=\frac{1}{1-\left[1-\frac1x\right]}=x \)

  • Result

    Iterating the function yields \((f\circ f)(x)=1-\frac1x\) and \((f\circ f\circ f)(x)=x\).

Difficulty level: Easy task (using definitions and simple reasoning)
Routine calculation training
Cs translation
Send comment on task by email