We can easily calculate this limit using the well-known limit \(\displaystyle \lim_{x\to 0}\frac{\sin x}{x}=1 \) and by simplifying:
\(\displaystyle \lim_{x\to 0}\frac{1-\cos x}{x^2}=\lim_{x\to 0}\frac{1-\cos x}{x^2}\frac{1+\cos x}{1+\cos x}= \lim_{x\to 0}\frac{1-\cos^2 x}{x^2}\frac{1}{1+\cos x}=\\ =\lim_{x\to 0}\frac{\sin^2 x}{x^2}\frac{1}{1+\cos x}= \lim_{x\to 0}\frac{\sin x}{x} \lim_{x\to 0}\frac{\sin x}{x}\lim_{x\to 0}\frac{1}{1+\cos x} =1{\cdot} 1\cdot\frac{1}{1+1}=\frac{1}{2} \),