Various series
Task number: 2934
Investigate the convergence of the series
Variant 1
\(\displaystyle \sum_{n=1}^{\infty}\frac{n+1}{n(n+2)} \).
Variant 2
\(\displaystyle \sum_{n=1}^{\infty}\sqrt\frac{n-1}{2n}\).
Variant 3
\(\displaystyle \sum_{n=1}^{\infty}\frac{n+1}{(n+1)\sqrt{n+1}-1} \)
Variant 4
\(\displaystyle \sum_{n=1}^{\infty}\left(\frac{1+n^2}{1+n^3}\right)^2 \).
Variant 5
\(\displaystyle \sum_{n=1}^{\infty}\frac1{(n+3)\sqrt{n}} \).
Variant 6
\(\displaystyle \sum_{n=1}^{\infty}\frac{\sqrt n}{n^3+1} \).
Variant 7
\(\displaystyle \sum_{n=1}^{\infty}\sqrt[n]{\frac1{1000}} \).
Variant 8
\(\displaystyle \sum_{n=1}^{\infty}\frac{2n-1}{\sqrt{2^n}} \)
Variant 9
\(\displaystyle \sum_{n=1}^{\infty}\frac1{n\cdot3^n} \).
Variant 10
\(\displaystyle \sum_{n=1}^{\infty}\frac{n^5}{2^n+3^n} \).
Variant 11
\(\displaystyle \sum_{n=1}^{\infty}\frac{1!+2!+3!+…+n!}{(2n)!} \).
Variant 12
\(\displaystyle \sum_{n=1}^{\infty}\left(\frac{n+1}{n+2}\right)^n \).
Variant 13
\(\displaystyle \sum_{n=1}^{\infty}\left(\frac{1+\cos n}{2+\cos n}\right)^n \).
Variant 14
\(\displaystyle \sum_{n=1}^{\infty}\frac{2+\cos n}{n+\ln n} \)
Variant 15
\(\displaystyle \sum_{n=1}^{\infty}\frac{\sin n}{n(n+2)} \)
Variant 16
\(\displaystyle \sum_{n=1}^{\infty}\sin\frac1n \).
Variant 17
\(\displaystyle \sum_{n=1}^{\infty}\sin\frac1{n^2} \).
Variant 18
\(\displaystyle \sum_{n=1}^{\infty}e^{\sqrt[-3]n} \).
Variant 19
\(\displaystyle \sum_{n=1}^{\infty}\frac{\ln n}{n} \)
Variant 20
\(\displaystyle \sum_{n=2}^{\infty}\frac{\sqrt{n^2+1}-n}{\log^2 n}\ . \)