Arithmetic of limits

Task number: 2866

Compute the following limits.

  • Variant 1

    \(\displaystyle \lim_{n\to\infty} \frac{n+1}{n+2}\)

  • Variant 2

    \(\displaystyle \lim_{n\to\infty} \left(4+\frac1n+\frac3{n^2-2n}\right)\left(5-\frac1{n^2}\right)\)

  • Variant 3

    \(\displaystyle \lim_{n\to\infty} \frac{3n^2+5n}{-n^2+4n}\)

  • Variant 4

    \(\displaystyle \lim_{n\to\infty} \frac{2n^2+n-3}{n^3-1}\)

  • Variant 5

    \(\displaystyle \lim_{n\to\infty} \frac{2n^3+6n}{n^3-7n+7}\)

  • Variant 6

    \(\displaystyle \lim_{n\to\infty} \frac{n^3-1}{2n^2+n-3}\)

  • Variant 7

    \(\displaystyle \lim_{n\to\infty} \frac{\sqrt n}{n^3+1}\)

  • Variant 8

    \(\displaystyle \lim_{n\to\infty} \frac{(2n-3)^{20}(3n+2)^{30}}{(2n+1)^{50}}\)

  • Variant 9

    \(\displaystyle \lim_{n\to\infty} \frac{3^n+5^n+10^n}{-2^{n+1}+5^{n+1}+10^{n+1}}\)

Difficulty level: Easy task (using definitions and simple reasoning)
Routine calculation training
Cs translation
Send comment on task by email