Series as limits
Task number: 2900
Determine the limits
Variant 1
\(\displaystyle \lim_{n\to\infty}\left(\frac{\sum_{k=1}^n k}{n+2}-\frac{n}2\right) \).
Variant 2
\(\displaystyle \lim_{n\to\infty}\frac1{n^4}\sum_{k=1}^n k^3 \).
Variant 3
\(\displaystyle \lim_{n\to\infty}\frac1{n^2}\sum_{k=1}^n \lfloor xk\rfloor \) depending on the real parameter \(x\).
Variant 4
\(\displaystyle \lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k(k+1)}. \)