Differences of roots
Task number: 2868
Determine the following limits.
Variant 1
\(\displaystyle \lim_{n\to\infty} \sqrt{n+5}-\sqrt{n-1}\)
Variant 2
\(\displaystyle \lim_{n\to\infty} \sqrt[3]{(n+1)^2}-\sqrt[3]{(n-1)^2}\)
Variant 3
\(\displaystyle \lim_{n\to\infty} \sqrt{n}\left(\sqrt{n+1}-\sqrt{n} \right)\)
Variant 4
\(\displaystyle \lim_{n\to\infty} \sqrt{n^2+n}-\sqrt{n}\)
Variant 5
\(\displaystyle \lim_{n\to\infty} \left(n\left(\sqrt{n-3}-n\right)\right)\)
Variant 6
\(\displaystyle \lim_{n\to\infty} \left(\sin\sqrt{n+1}- \sin\sqrt{n}\right)\)