Comparison test
Task number: 2930
Investigate the convergence of the sequences.
Variant 1
\(\displaystyle \sum_{n=1}^{\infty}\frac{1}{2n+1} \)
Variant 2
\(\displaystyle \sum_{n=1}^{\infty}\frac{1}{(2n+1)^2} \)
Variant 3
\(\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^2-4n+5} \).
Variant 4
\(\displaystyle \sum_{n=1}^{\infty}\frac{2n^2+3n+4}{2n^2+5} \)
Variant 5
\(\displaystyle \sum_{n=1}^{\infty}\frac{2n^2+3n+4}{(2n^2+5)^2} \)
Variant 6
\(\displaystyle \sum\limits_{n=1}^{\infty} \frac{2n^2 + 1}{n^3} \).
Variant 7
\(\displaystyle \sum\limits_{n=1}^{\infty} \frac{n^3 - 1}{n^4 + n^2}. \)
Variant 8
\(\displaystyle \sum\limits_{n=1}^{\infty} \frac{6^n + 7^n}{8^n - 2^n}. \)
Variant 9
\(\displaystyle \sum_{n=1}^{\infty}\frac{1}{(n+1)\sqrt{n+2}} \)
Variant 10
\(\displaystyle \sum_{n=1}^{\infty}\frac{1}{\sqrt{2n+1}\sqrt{2n+3}} \)
Variant 11
\(\displaystyle \sum\limits_{n=2}^{\infty} \frac{1}{\root 5 \of{n^4 + n} \root 3 \of{n-2}}. \)