Bounded extrema

Task number: 3233

For the given function \(f\) determine the global extrema of the function \(f\) on the given set \(M\). Verify that the points are really global extrema.

  • Variant 1

    \(f(x, y) = 2x + y\) a \(M = \{(x, y) \in \mathbb R^2\colon \space x^2 + y^2 = 1\}\).

  • Variant 2

    \(f(x, y, z) = x + y + z\) a \(M = \{(x, y, z) \in \mathbb R^3 \colon \space x^2 + y^2 + z^2 = 1\}\)

  • Variant 3

    \(f(x, y) = x^2 - 2x + y^2 - 4y\) a \(M = \{(x, y) \in \mathbb R^2\colon \space x^2 + y^2 = 20 \}\)

  • Variant 4

    \(f(x, y) = x^2 - 2x + y^2 - 4y\) a \(M = \{(x, y) \in \mathbb R^2\colon \space x^2 + y^2 \leq 20 \}\)

  • Variant 5

    \(f(x, y) = x^2 -4 xy + y^2 + 4y\) a \(M = \{(x, y) \in \mathbb R^2\colon \space 0 \leq x \leq 1, \space 0 \leq y \leq 1 \}\)

  • Variant 6

    \(f(x, y) = x^2 + y^2 + z^2\) a \(M = \{(x, y, z) \in \mathbb R^3\colon \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0 \}\), where \(a, b, c > 0\) are parameters.

Difficulty level: Easy task (using definitions and simple reasoning)
Routine calculation training
Cs translation
Send comment on task by email