Series
Task number: 2901
Compute the sums of the following sequences.
Variant 1
\(\displaystyle \sum_{n=0}^{\infty}\frac{3^n-2^{n+1}}{6^n} \).
Variant 2
\(\displaystyle \sum_{n=2}^\infty\frac{1}{n^2-1}. \)
Variant 3
\(\displaystyle \sum_{n=1}^{\infty}\frac1{4n^2-1} \).
Variant 4
\(\displaystyle \sum_{n=1}^\infty\frac{1}{n(n+5)}. \)
Variant 5
\(\displaystyle \sum_{n=1}^\infty\frac{1}{n(n+1)(n+2)(n+3)}. \)
Variant 6
\(\displaystyle \sum_{n=1}^{\infty}\frac{2n-1}{2^n} \).