Series

Task number: 2901

Compute the sums of the following sequences.

  • Variant 1

    \(\displaystyle \sum_{n=0}^{\infty}\frac{3^n-2^{n+1}}{6^n} \).

  • Variant 2

    \(\displaystyle \sum_{n=2}^\infty\frac{1}{n^2-1}. \)

  • Variant 3

    \(\displaystyle \sum_{n=1}^{\infty}\frac1{4n^2-1} \).

  • Variant 4

    \(\displaystyle \sum_{n=1}^\infty\frac{1}{n(n+5)}. \)

  • Variant 5

    \(\displaystyle \sum_{n=1}^\infty\frac{1}{n(n+1)(n+2)(n+3)}. \)

  • Variant 6

    \(\displaystyle \sum_{n=1}^{\infty}\frac{2n-1}{2^n} \).

Difficulty level: Easy task (using definitions and simple reasoning)
Routine calculation training
Cs translation
Send comment on task by email