Limits of ratios
Task number: 3028
Determine the following limits
Variant 1
\( \displaystyle \lim_{x\to \infty}\frac{\ln x}{x} \)
Variant 2
\( \displaystyle \lim_{x\to 0}\frac{\ln(\cos x)}{x} \)
Variant 3
\( \displaystyle \lim_{x\to \infty}\frac{\ln(1+x^2)}{\ln(2+3x^3)} \)
Variant 4
\( \displaystyle \lim_{x\to 0}\frac{e^{x^2}-1}{\cos x-1} \)
Variant 5
\( \displaystyle \lim_{x\to 0^+}\frac{\ln(\sin2 x)}{\ln(\sin x)} \)
Variant 6
\( \displaystyle \lim_{x\to 0}\frac{\sin x}{\arcsin x} \)
Variant 7
\( \displaystyle \lim_{x\to 0}\frac{e^x-1}{\sin 2x} \)
Variant 8
\( \displaystyle \lim_{x\to \infty}\frac{e^{\sqrt{x}}}{x} \)
Variant 9
\( \displaystyle \lim_{x\to 0}\frac{\tan x}{\cos x-1} \)
Variant 10
\( \displaystyle \lim_{x\to \infty}\frac{\sin x-x}{x^3} \)
Variant 11
\( \displaystyle \lim_{x\to 0}\frac{\arctan(1+x)-\arctan(1-x)}{x} \)
Variant 12
\( \displaystyle \lim_{x\to 0}\frac{e^x\sin x-x(1+x)}{x^3} \)