Limits of ratios

Task number: 3028

Determine the following limits

  • Variant 1

    \( \displaystyle \lim_{x\to \infty}\frac{\ln x}{x} \)

  • Variant 2

    \( \displaystyle \lim_{x\to 0}\frac{\ln(\cos x)}{x} \)

  • Variant 3

    \( \displaystyle \lim_{x\to \infty}\frac{\ln(1+x^2)}{\ln(2+3x^3)} \)

  • Variant 4

    \( \displaystyle \lim_{x\to 0}\frac{e^{x^2}-1}{\cos x-1} \)

  • Variant 5

    \( \displaystyle \lim_{x\to 0^+}\frac{\ln(\sin2 x)}{\ln(\sin x)} \)

  • Variant 6

    \( \displaystyle \lim_{x\to 0}\frac{\sin x}{\arcsin x} \)

  • Variant 7

    \( \displaystyle \lim_{x\to 0}\frac{e^x-1}{\sin 2x} \)

  • Variant 8

    \( \displaystyle \lim_{x\to \infty}\frac{e^{\sqrt{x}}}{x} \)

  • Variant 9

    \( \displaystyle \lim_{x\to 0}\frac{\tan x}{\cos x-1} \)

  • Variant 10

    \( \displaystyle \lim_{x\to \infty}\frac{\sin x-x}{x^3} \)

  • Variant 11

    \( \displaystyle \lim_{x\to 0}\frac{\arctan(1+x)-\arctan(1-x)}{x} \)

  • Variant 12

    \( \displaystyle \lim_{x\to 0}\frac{e^x\sin x-x(1+x)}{x^3} \)

Difficulty level: Easy task (using definitions and simple reasoning)
Routine calculation training
Cs translation
Send comment on task by email