Calculation by expansion

Task number: 4548

Expand the determinants of the following matrices according to the second row and then calculate its value:
  • Hint

    If we denote by \(\boldsymbol A^{i,j}\) the matrix obtained from the matrix \(\boldsymbol A\) by discarding the \(i\)-th row and \(j\)-th column, then the Laplace expansion of the determinant of a matrix of order \(n\) by the \(i\)-th row is:

    \[\det\boldsymbol A=\sum_{j=1}^n a_{i,j} (-1)^{i+j} \det\boldsymbol A^{i,j}\]

    Laplace expansion is computationally inefficient already when the corresponding row contains at least two non-zero elements. Its recurrent application leads to an exponential computation similar to the direct application of the determinant definition.

  • Variant

    Over \(\mathbb Z_5\): \(\begin{pmatrix} 1 & 2 & 3 \\ 4 & 4 & 1 \\ 2 & 3 & 3 \\ \end{pmatrix} \)
  • Solution

    \(\begin{vmatrix} 1 & 2 & 3 \\ 4 & 4 & 1 \\ 2 & 3 & 3 \\ \end{vmatrix} = -4 \begin{vmatrix} 2 & 3 \\ 3 & 3 \\ \end{vmatrix} + 4 \begin{vmatrix} 1 & 3 \\ 2 & 3 \\ \end{vmatrix} - \begin{vmatrix} 1 & 2 \\ 2 & 3 \\ \end{vmatrix} = 2+3+1=1\)
  • Answer

    The determinant is \(1\).
  • Variant

    Over \(\mathbb R\): \(\begin{pmatrix} 0 & 1 & 2 & 0 \\ 3 & 0 & 0 & 4 \\ 0 & 5 & 6 & 0 \\ 7 & 0 & 0 & 8 \\ \end{pmatrix} \)
  • Solution

    \(\begin{vmatrix} 0 & 1 & 2 & 0 \\ 3 & 0 & 0 & 4 \\ 0 & 5 & 6 & 0 \\ 7 & 0 & 0 & 8 \\ \end{vmatrix} = -3 \begin{vmatrix} 1 & 2 & 0 \\ 5 & 6 & 0 \\ 0 & 0 & 8 \\ \end{vmatrix} +0 \begin{vmatrix} 0 & 2 & 0 \\ 0 & 6 & 0 \\ 7 & 0 & 8 \\ \end{vmatrix} -0 \begin{vmatrix} 0 & 1 & 0 \\ 0 & 5 & 0 \\ 7 & 0 & 8 \\ \end{vmatrix} +4 \begin{vmatrix} 0 & 1 & 2 \\ 0 & 5 & 6 \\ 7 & 0 & 0 \\ \end{vmatrix} = 96-112=-16\)
  • Answer

    The determinant is \(-16\).
  • Variant

    Over \(\mathbb R\): \(\begin{pmatrix} 0 & 1 & 2 & 0 \\ 3 & 100 & 100 & 4 \\ 0 & 5 & 6 & 0 \\ 7 & 100 & 100 & 8 \\ \end{pmatrix} \)
  • Solution

    \(\begin{vmatrix} 0 & 1 & 2 & 0 \\ 3 & 100 & 100 & 4 \\ 0 & 5 & 6 & 0 \\ 7 & 100 & 100 & 8 \\ \end{vmatrix} = -3 \begin{vmatrix} 1 & 2 & 0 \\ 5 & 6 & 0 \\ 100 & 100 & 8 \\ \end{vmatrix} +100 \begin{vmatrix} 0 & 2 & 0 \\ 0 & 6 & 0 \\ 7 & 0 & 8 \\ \end{vmatrix} -100 \begin{vmatrix} 0 & 1 & 0 \\ 0 & 5 & 0 \\ 7 & 0 & 8 \\ \end{vmatrix} +4 \begin{vmatrix} 0 & 1 & 2 \\ 0 & 5 & 6 \\ 7 & 100 & 100 \\ \end{vmatrix} =96-112=-16\)

    The determinant has the same value as in the previous variant, because the coefficients of 100 have been multiplied by the determinants of the singular matrices and these have value 0.

  • Answer

    The determinant is \(-16\).
Difficulty level: Easy task (using definitions and simple reasoning)
Routine calculation training
Cs translation
Send comment on task by email