Matrix of the change of basis
Task number: 2566
Let \(A=((1{,}2,0{,}1)^T,(4{,}1,3{,}1)^T,(3{,}1,3{,}4)^T,(2{,}0,2{,}2)^T)\),
\(B=((1{,}2,3{,}1)^T,(4{,}4,1{,}1)^T,(2{,}0,2{,}1)^T,(3{,}1,4{,}0)^T).\)
be two bases of \(\mathbb Z_5^4\). Determine the matrices of the change of basis:
Variant 1
\([id]_{AK}\), i.e. from the basis \(A\) to the canonical basis.
Variant 2
\([id]_{KB}\), i.e. from the canonical basis to the basis \(B\).
Variant 3
\([id]_{AB}\), i.e. from the basis \(A\) to the basis \(B\).