## Spanning trees

Use determinant to calculate the number of spanning trees of the following graph: • #### Resolution

The Laplace's matrix of the graph is

$$L=\begin{pmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 3 & -1 & 0 \\ -1 & -1 & -1 & 3 & 0 \\ -1 & -1 & 0 & 0 & 2 \\ \end{pmatrix}$$

By the theorem on the number of spanning trees

$$\kappa(G)=\det(L^{1{,}1})= \begin{vmatrix} 4 & -1 & -1 & -1 \\ -1 & 3 & -1 & 0 \\ -1 & -1 & 3 & 0 \\ -1 & 0 & 0 & 2 \\ \end{vmatrix} = \begin{vmatrix} 4 & -1 & -1 & -1 \\ -1 & 3 & -1 & 0 \\ -1 & -1 & 3 & 0 \\ 7 & -2 & -2 & 0 \\ \end{vmatrix} = \begin{vmatrix} -1 & 3 & -1 \\ -1 & -1 & 3 \\ 7 & -2 & -2 \\ \end{vmatrix}$$
$$= \begin{vmatrix} -1 & 3 & -1 \\ 0 & -4 & 4 \\ 0 & 19 & -9 \\ \end{vmatrix} =-4 \begin{vmatrix} -1 & 1 \\ 19 & -9 \\ \end{vmatrix} =-4(9-19)=40$$.

It is possible to verify the result by a listing of all spanning trees: $$K_4$$ has 16 spanning trees and each has two options to join the top vertex (the left or the right edge) – in total 32 possibilities. Otherwise the spanning tree contains both edges incident with the top vertex and then we have 4 options that contain the bottom edge an 4 that do not.

• #### Result

The graph has 40 spanning trees.  