If \(\mathbf A\) and \(\mathbf B\) are regular, then exist \(\mathbf A^{-1}\) and \(\mathbf B^{-1}\). Also holds
\((\mathbf A\mathbf B)(\mathbf B^{-1}\mathbf A^{-1})= \mathbf A(\mathbf B\mathbf B^{-1})\mathbf A^{-1}= \mathbf A(\mathbf I_n)\mathbf A^{-1}= \mathbf A\mathbf A^{-1}= \mathbf I_n\).
I.e. \(\mathbf B^{-1}\mathbf A^{-1}\) is the inverse for \(\mathbf A\mathbf B\), hence \(\mathbf A\mathbf B\) is a regular matrix.