Powers in finite fields
Task number: 2482
For \(n\in \mathbb N\) and an asociative operation \(\cdot\) let \(a^n=a\cdot a\cdot \ldots \cdot a\), where the element \(a\) appears \(n\) times in the product.
Variant 1
Determine values \(2^{101},3^{1\,001}\) and \(4^{1\,000\,001}\) in the field \(\mathbb Z_{17}\).
Variant 2
Determine \(5^{100},8^{200},11^{300}\) and \(18^{400}\) in the field \(\mathbb Z_{19}\).