General independence
Task number: 2519
Let \(u,v,w\) be linear independent vectors in a vector space\(V\) over the field \(\mathbb R\). Decide, whether the following sets of vectors are linearly independent or not.
- Variant 1- \(\{u,u+v,u+w\}\). 
- Variant 2- \(\{u+v,u-v,w\}\). 
- Variant 3- \(\{u+v,u-v,u+w,u-w\}\). 
- Variant 4- \(\{u+v,u+w,v+w\}\). 
- Variant 5- \(\{u-v,u-w,v-w\}\). 
- Variant 6- \(\{u-2v+w,3u+v-2w,7u+14v-13w\}\). 
- Variant 7- \(\{u,2u,w\}\) 
- Variant 8- \(\{u,v+w\}\). 



