Equation with linear mapping

Task number: 4463

For mapping \(f: \mathbb{R}^3 \to \mathbb{R}^3\) given by \(f(x, y, z) = (x - y, y - z, z - x)^T\) determine the kernel \(\ker(f)\), the image \(f(\mathbb{R}^3)\) and the pre-image \(f^{-1}((1, 1, -2)^T)\).
  • Solution

    The matrix of the mapping with respect to standard bases is \([f]_{E,E}= \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \\ \end{pmatrix} \sim\sim \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ \end{pmatrix} \)

    The kernel of the mapping is the set of solutions of the homogeneous system with this matrix. Here \(z\) is a free variable and therefore the solution set is \(ker(f)=span((1{,}1,1)^T)\)

    The range is the subspace generated by the columns corresponding to the leading variables, i.e. \(f(\mathbb{R}^3)=span((1{,}0,-1)^T,(-1{,}1,0)^T)\).

    The preimage of the vector \((1, 1, -2)^T\) is the affine space obtained by adding one particular solution of the equation \(f(\mathbf{x})=(1, 1, -2)^T\) to the kernel. This is the solution of the non-homogeneous system with right-hand side \((1, 1, -2)^T\):

    \(\left( \begin{array}{ccc|c} 1 & -1 & 0 & 1\\ 0 & 1 & -1 & 1\\ -1 & 0 & 1 & -2\\ \end{array} \right) \sim\sim \left( \begin{array}{ccc|c} 1 & -1 & 0 & 1\\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0\\ \end{array} \right) \sim \left( \begin{array}{ccc|c} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0\\ \end{array} \right) \)

    This yields \(f^{-1}((1, 1, -2)^T)=(2{,}1,0)^T+span((1{,}1,1)^T)\).

  • Answer

    The kernel of the mapping \(f\) is the one-dimensional subspace \(ker(f)=span((1{,}1,1)^T)\).

    A image is a two-dimensional subspace \(f(\mathbb{R}^3)=span((1{,}0,-1)^T,(-1{,}1,0)^T)\).

    The pre-image of the given vector is the affine subspace \(f^{-1}((1, 1, -2)^T)=(2{,}1,0)^T+span((1{,}1,1)^T)\).

Difficulty level: Easy task (using definitions and simple reasoning)
Reasoning task
Routine calculation training
Cs translation
Send comment on task by email