Independence in arithmetic vector spaces
Task number: 2520
Decide, whether the following set of vectors is independent in the arithmetic vector spaces \(\mathbb R^4, \mathbb Z_3^4\) and \(\mathbb Z_5^4\).
If not, find an expression of some vector as a linear combination of the others.
Variant 1
\(X_1=\{(0{,}1,2{,}1)^T,(1{,}2,0{,}0)^T,(1{,}1,2{,}0)^T,(1{,}2,1{,}1)^T\}\).
Variant 2
\(X_2=\{(1{,}1,2{,}0)^T,(1{,}2,1{,}1)^T,(0{,}1,2{,}1)^T,(1{,}1,0{,}0)^T\}\).
Variant 3
\(X_3=\{(1{,}0,2{,}0)^T,(2{,}1,0{,}2)^T,(0{,}2,2{,}1)^T,(2{,}2,1{,}1)^T\}\).