Product, norm, orthogonality
Task number: 2687
For the standard scalar product \(\langle \mathbf x|\mathbf y \rangle=\sum_{i=1}^n x_i \overline{y_i}\) over \(\mathbb C^n\), or \(\mathbb R^n\) determine for the following vectors \(\mathbf x\) and \(\mathbf y\):
1. the scalar product of \(\mathbf x\) and \(\mathbf y\)
2. the Euclidean norms of \(\mathbf x\) and \(\mathbf y\)
3. the distance between \(\mathbf x\) and \(\mathbf y\)
4. whether vectors \(\mathbf x\) and \(\mathbf y\) are orthogonal.
Variant 1
\(\mathbf x^T=(4, 2, 3)\), \(\mathbf y^T=(1, 5, -2)\).
Variant 2
\(\mathbf x^T=(3, 1, -2)\), \(\mathbf y^T=(1, -3, 2)\).
Variant 3
\(\mathbf x^T=(2, -1, 4)\), \(\mathbf y^T=(5, 2, -2)\).
Variant 4
\(\mathbf x^T=(2, 1, 4, -1)\), \(\mathbf y^T=(4, -1, 0, 2)\).
Variant 5
\(\mathbf x^T=(1, 1+i)\), \(\mathbf y^T=(2i, a+bi)\) (with real parameters \(a\), \(b\))
Variant 6
\(\mathbf x^T=(2+i, 0, 4-5i)\), \(\mathbf y^T=(1+i, 2+i, -1)\).
Variant 7
\(\mathbf x^T=(1, 2, 1, -2i)\), \(\mathbf y^T=(i, 2i, i-1, 2)\).