Block matrix 2
Task number: 4445
The goal of the task is to prove the following statement:
A Hermitian block matrix \( \begin{pmatrix} \boldsymbol A & \boldsymbol B^H\\ \boldsymbol B & \boldsymbol C \end{pmatrix} \) is positive definite, if and only if the matrix \(\boldsymbol A\) and the matrix \(\boldsymbol C - \boldsymbol B\boldsymbol A^{-1}\boldsymbol B^H\) are both positive definite.
Step 1
Show first that if the \( \begin{pmatrix} \boldsymbol A & \boldsymbol B^H\\ \boldsymbol B & \boldsymbol C \end{pmatrix} \) positive definite, then \(\boldsymbol A\) is positive definite.Solution
Suppose that \(\boldsymbol A\) is of order \(n\), \(\boldsymbol C\) is of order \(m\), or \(\boldsymbol B\in \mathbb C^{m\times n}\). Given a non-trivial \(\boldsymbol x=(x_1,\ldots,x_n)^T\in \mathbb C^n\), we add \(m\) zeros to \(\boldsymbol x'=(x_1,\dots,x_n,0,\dots,0)^T\in \mathbb C^{n+m}\). Then \(\boldsymbol x^H\boldsymbol A\boldsymbol x = (\overline{x_1},\ldots,\overline{x_n},0,\ldots,0) \begin{pmatrix} \boldsymbol A & \boldsymbol B^H \\ \boldsymbol B & \boldsymbol C \end{pmatrix} (x_1,\ldots,x_n,0,\ldots,0)^T = \boldsymbol x'^H \begin{pmatrix} \boldsymbol A & \boldsymbol B^H \\ \boldsymbol B & \boldsymbol C \end{pmatrix} \boldsymbol x' > 0 \).Step 2
What elementary transformations can be used to eliminate the matrix \(\boldsymbol B\)? Can you express these by a matrix product?Solution
Since we have shown that \(\boldsymbol A\) is positive definite, it is regular and thus it has its inverse matrix \(\boldsymbol A^{-1}\).
If we take the first \(n\) rows, or the matrix \((\boldsymbol A|\boldsymbol B^H)\), and multiply it from the left \(\boldsymbol B\boldsymbol A^{-1}\), we get the matrix \((\boldsymbol B|\boldsymbol B\boldsymbol A^{-1}\boldsymbol B^H)\).
Elimination of the matrix \(\boldsymbol B\) corresponds to subtracting \(\boldsymbol B\boldsymbol A^{-1}\) times the first \(n\) rows from the remaining \(m\) rows.
The whole arrangement can be represented by a product with the regular matrix \( \begin{pmatrix} \mathbf I_n & \boldsymbol 0_{nm}\\ -\boldsymbol B\boldsymbol A^{-1} & \mathbf I_m \end{pmatrix} \), ie.
\[ \begin{pmatrix} \mathbf I_n & \boldsymbol 0_{nm} \\ -\boldsymbol B\boldsymbol A^{-1} & \mathbf I_m \end{pmatrix} \begin{pmatrix} \boldsymbol A & \boldsymbol B^H \\ \boldsymbol B & \boldsymbol C \end{pmatrix} = \begin{pmatrix} \boldsymbol A & \boldsymbol B^H \\ \boldsymbol 0_{mn} & \boldsymbol C-\boldsymbol B\boldsymbol A^{-1}\boldsymbol B^H \end{pmatrix} \]Step 3
Then use the knowledge from the previous two tasks.Solution
In addition, we multiply the equality derived in the previous step from the right by the Hermitian transpose of the matrix \( \begin{pmatrix} \mathbf I_n & \boldsymbol 0_{nm} \\ -\boldsymbol B\boldsymbol A^{-1} & \mathbf I_m \end{pmatrix} \).
Specifically, we get: \[ \begin{pmatrix} \mathbf I_n & \boldsymbol 0_{nm} \\ -\boldsymbol B\boldsymbol A^{-1} & \mathbf I_m \end{pmatrix} \begin{pmatrix} \boldsymbol A & \boldsymbol B^H \\ \boldsymbol B & \boldsymbol C \end{pmatrix} \begin{pmatrix} \mathbf I_n & \boldsymbol 0_{nm} \\ -\boldsymbol B\boldsymbol A^{-1} & \mathbf I_m \end{pmatrix}^H= \] \[= \begin{pmatrix} \boldsymbol A & \boldsymbol B^H\\ \boldsymbol 0_{mn} & \boldsymbol C-\boldsymbol B\boldsymbol A^{-1}\boldsymbol B^H \end{pmatrix} \begin{pmatrix} \mathbf I_n & -\boldsymbol A^{-1}\boldsymbol B^H \\ \boldsymbol 0_{mn} & \mathbf I_m \end{pmatrix} = \begin{pmatrix} \boldsymbol A & \boldsymbol 0_{nm} \\ \boldsymbol 0_{mn} & \boldsymbol C-\boldsymbol B\boldsymbol A^{-1}\boldsymbol B^H \end{pmatrix} \]
We found that the matrix \( \begin{pmatrix} \boldsymbol A & \boldsymbol B^H\\ \boldsymbol B & \boldsymbol C \end{pmatrix} \) a \( \begin{pmatrix} \boldsymbol A & \boldsymbol 0_{nm} \\ \boldsymbol 0_{mn} & \boldsymbol C-\boldsymbol B\boldsymbol A^{-1}\boldsymbol B^H \end{pmatrix} \) are either both positive definite or none, with the latter matrix being positive definite if and only if both \(\boldsymbol A\) and \(\boldsymbol C-\boldsymbol B\boldsymbol A^{-1}\boldsymbol B^H\) are positive definite.