Task list filter?
Task rankings
Task tags
«
«
Kerne, image, preimage
Task number: 4530
Solution
The matrix of the mapping with respect to the standard bases is [f]E,E=(1−1001−1−101)∼∼(1−1001−1000)∼(10−101−1000)
The kernel of the mapping is the set of solutions of the homogeneous system of equations with this matrix. Here z is a free variable, and therefore the solution set is ker(f)=span((1,1,1)T).
The range is the space generated by the columns corresponding to the basic variables, i.e. f(R3)=span((1,0,−1)T,(−1,1,0)T).
The preimage of the vector (1,1,−2)T is obtained as the affine space formed by adding one particular solution of the equation f(\boldsymbol x)=(1, 1, -2)^\mathsf T to the kernel of the mapping. This is the solution of the non-homogeneous system with the right-hand side (1, 1, -2)^\mathsf T:
\left( \begin{array}{ccc|c} 1 & -1 & 0 & 1\\ 0 & 1 & -1 & 1\\ -1 & 0 & 1 & -2\\ \end{array} \right) \sim\sim \left( \begin{array}{ccc|c} 1 & -1 & 0 & 1\\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0\\ \end{array} \right) \sim \left( \begin{array}{ccc|c} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0\\ \end{array} \right)Therefore f^{-1}((1, 1, -2)^\mathsf T)=(2{,}1,0)^\mathsf T+\operatorname{span}((1{,}1,1)^\mathsf T).