Elementary properties
Task number: 2456
Determine graphs, cycles, a factorzation into transpositions, the number of inversions, the sign, and the inverse permutations for the following permutations: \(p\), \(q\) and their compositions \(q\circ p\) and \(p\circ q\). (Permutations are composed as mappings, i.e. \((q\circ p)(i)=q(p(i))\).)
Variant 1
\(p=(6{,}4,1{,}5,3{,}2)\), \(q=(6{,}4,3{,}2,5{,}1)\).
Variant 2
\(p=(1{,}2,7{,}6,5{,}4,3{,}8,9)\), \(q=(1{,}3,5{,}7,9{,}8,6{,}4,2)\).
Variant 3
\(p=(5{,}4,3{,}2,1{,}9,8{,}7,6)\), \(q=(8{,}6,4{,}2,1{,}3,5{,}7,9)\).
Variant 4
\(p=(3{,}6,9{,}2,5{,}8,1{,}4,7)\), \(q=(9{,}8,7{,}6,5{,}4,3{,}2,1)\).