Systems with the same matrix

Task number: 2388

Solve systems \(\mathbf A\mathbf x=\mathbf 0\), \(\mathbf A\mathbf x=\mathbf b^1\), \(\mathbf A\mathbf x=\mathbf b^2\) and \(\mathbf A\mathbf x=\mathbf b^3\) for:

\[ \mathbf A= \begin{pmatrix} 6 & 3 & 2 & 3 & 4 \\ 4 & 2 & 1 & 2 & 3 \\ 4 & 2 & 3 & 2 & 1 \\ 2 & 1 & 7 & 3 & 2 \\ \end{pmatrix},\ \mathbf b^1= \begin{pmatrix} 5 \\ 4 \\ 0 \\ 1 \\ \end{pmatrix},\ \mathbf b^2= \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \end{pmatrix},\ \mathbf b^3= \begin{pmatrix} 3 \\ 2 \\ 2 \\ 3 \\ \end{pmatrix} \]

What is the relation between th geometric interpretations of these systems?

  • Resolution

    We solve all four systems simultaneously by reducing \((\mathbf A|\mathbf 0\ \mathbf b^1\ \mathbf b^2\ \mathbf b^3)\) into echelon form:

    \( \begin{pmatrix} \begin{array}{ccccc|cccc} 6 & 3 & 2 & 3 & 4 & 0 & 5 & 1 & 3 \\ 4 & 2 & 1 & 2 & 3 & 0 & 4 & 1 & 2 \\ 4 & 2 & 3 & 2 & 1 & 0 & 0 & 1 & 2 \\ 2 & 1 & 7 & 3 & 2 & 0 & 1 & 1 & 3 \\ \end{array} \end{pmatrix}\sim \begin{pmatrix} \begin{array}{ccccc|cccc} 2 & 1 & 7 & 3 & 2 & 0 & 1 & 1 & 3 \\ 4 & 2 & 1 & 2 & 3 & 0 & 4 & 1 & 2 \\ 0 & 0 & 2 & 0 &-2 & 0 &-4 & 0 & 0 \\ 0 & 0 & 1 & 0 &-1 & 0 &-2 &-1 & 0 \\ \end{array} \end{pmatrix}\sim \)

    \( \begin{pmatrix} \begin{array}{ccccc|cccc} 2 & 1 & 7 & 3 & 2 & 0 & 1 & 1 & 3 \\ 0 & 0 &-13&-4 &-1 & 0 & 2 &-1 &-4 \\ 0 & 0 & 1 & 0 &-1 & 0 &-2 &-1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \end{array} \end{pmatrix}\sim \begin{pmatrix} \begin{array}{ccccc|cccc} 2 & 1 & 7 & 3 & 2 & 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 0 &-1 & 0 &-2 &-1 & 0 \\ 0 & 0 & 0 &-4 &-14& 0 &-24&-14&-4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \end{array} \end{pmatrix}\sim \)

    \( \begin{pmatrix} \begin{array}{ccccc|cccc} 2 & 1 & 7 & 3 & 2 & 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 0 &-1 & 0 &-2 &-1 & 0 \\ 0 & 0 & 0 & 2 & 7 & 0 &12 & 7 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\ \end{array} \end{pmatrix} \)

    The homogeneous system \(\mathbf A\mathbf x=\mathbf 0\) has solution \(\mathbf x^0=p_1(3{,}0,4,-14{,}4)^T+p_2(-1{,}2,0{,}0,0)^T\),
    the system \(\mathbf A\mathbf x=\mathbf b^1\) has solution \(\mathbf x=(0,-3,-2{,}6,0)^T+\mathbf x^0\),
    the system \(\mathbf A\mathbf x=\mathbf b^2\) has no solution, and
    the system \(\mathbf A\mathbf x=\mathbf b^3\) has solution \(\mathbf x=(0{,}0,0{,}1,0)^T+\mathbf x^0\).

    Geometrically, each system are yields an intersection of hyperplanes, the corresponding hyperplanes in these systems are parallel. The vector \(\mathbf b\) detrmines the shift of these hyperplanes.

    The left sides of the first three equations are dependent, hence the corresponding pairwise intersections should coincide. Otherwise the system has no solution as in the case of \(\mathbf b^2\).

Difficulty level: Easy task (using definitions and simple reasoning)
Routine calculation training
Cs translation
Send comment on task by email