Nonstandard scalar product
Task number: 2688
Let the scalar product over \(\mathbb C^3\) be given as:
\(\langle \mathbf x|\mathbf y \rangle= x_1\overline{y_1} + x_2\overline{y_2} + 2x_3\overline{y_3} + x_3\overline{y_2} + x_2\overline{y_3} \)
Determine for the following vectors \(\mathbf x\) and \(\mathbf y\):
1. the scalar product of \(\mathbf x\) and \(\mathbf y\)
2. the Euclidean norms of \(\mathbf x\) and \(\mathbf y\)
3. the distance between \(\mathbf x\) and \(\mathbf y\)
4. whether vectors \(\mathbf x\) and \(\mathbf y\) are orthogonal.
Variant 1
\(\mathbf x^T=(4, 2, 3)\), \(\mathbf y^T=(1, 5, -2)\).
Variant 2
\(\mathbf x^T=(3, 1, -2)\), \(\mathbf y^T=(1, -3, 2)\).
Variant 3
\(\mathbf x^T=(2, -1, 4)\), \(\mathbf y^T=(5, 2, -2)\).
Variant 4
\(\mathbf x^T=(2+i, 0, 4-5i)\), \(\mathbf y^T=(1+i, 2+i, -1)\).